
INTRODUCTION

Aerials  are  converters  of  electromagnetic  energy.  Transmitting
aerial is meant for transformation of the electromagnetic waves (EMW)
energy connected  to  directing  systems,  to  the  EMW energy in  a  free
space and its radiation in given directions. The reception aerial performs
inverse functions. Thus, each aerial carries out two functions: transforms
one  kind  of  electromagnetic  energy  to  another;  provides  radiation  of
electromagnetic  waves  in  certain  directions,  or  reception  of  EMW,
coming with certain directions.

The aerial properties follow from their definition: 
1. Transformation of energy. If an input of transmitting aerial is fed

by the waves connected to the directing system, which energy can be
characterized  by  voltage  U and  current  strength I ,  we  receive
electromagnetic waves in free space on an output,  energy of which is
characterized  by  intensity  of  the  electric  field  E  and  intensity  of
the magnetic field H (Fig. 0.1(a)).

2. Convertibility of the aerial. If to an output of the same aerial to
bring energy of freely extending ЕМW on an input, we receive energy of
the  electromagnetic  waves  connected  to  the  directing  system
(Fig.0.1(b)).

3. Energy directivity. Maintenance of main directions of radiation
and  reception  in  space  enables  to  concentrate  the  radiation  energy  in
the  given  solid  angles,
that  allows  to  reduce
the total radiated power. 

Feeding  devices
are  directing  systems,
that  serve  to  transfer
the  EMW  energy  from
the generator to the aerial
and  from  the  aerial  to
the receiver.

Classification  of
aerials by the principle of
action is the most widely
used.  Classification  by
the  form  of  current-
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carrying  surfaces  is  close  to  it.  Quite  often  aerials  are  classified  by
frequency ranges.

First, aerials are divided into active and passive. Passive aerials are
further subdivided into two big classes: linear aerials and aperture aerials.

Any radiating system of a small (in comparison with the length)
cross size, along which longitudinal axis the alternating current flows, are
referred to as the linear aerials. The diameter of the section of the linear
aerials is much less than the wavelength.

The  aperture  aerials  are  characterized  by  some  surface  through
which  all  flux  of  electromagnetic  energy,  radiated  or  received,  is
propagated.  This  surface  is  referred  to  as  the  aperture  surface.
The aperture sizes considerably exceed the wavelength. Among these are
the reflector-type antennas, horn, the open end of a waveguide, etc.

Antenna arrays consist of individual radiators: linear or aperture.
They are used in the frequency ranges 3 MHz – 30 GHz. There may be
linear, planar, circular, spherical and conform antenna arrays.

1. DETERMINATION OF THE RADIATION FIELD 
ON THE GIVEN SOURCES

The research of aerials in a mode of radiation is relatively simplier,
than the research of aerials in a mode of electromagnetic waves reception.
For the aerial,  which properties in a mode of radiation are known, all
parameters at work in a mode of reception may be found on the basis of
the principle of reciprocity. Therefore, the theory of aerials is primarily
studied as the theory of transmitting aerials.

1.1. Basic problems of the aerial theory

In the aerial theory the direct and inverse problems are considered
to be the basic ones. The direct problem is to determine the radiation field
from  given  to  the  aerial  and  its  current.  The  essence  of  the  inverse
problem is to find or synthesize the aerial and to determine the way of its
feed by the given distribution of the radiation field .

Let us consider the direct problem of the aerial theory in detail.
The design and the form of the aerial, electric and magnetic properties of
materials of which it is made, are considered to be known, as well as an
arrangement of sources of external currents and charges. At the first stage
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of  decision  of  the  direct  problem  it  is  necessary  to  find  out
the distribution of currents, charges or tangential components of the field
on the  surface  of  the  aerial.  At  the  second stage  from predetermined
distribution of sources on surfaces of the aerial the electromagnetic field
in space is found and parameters of the aerial are calculated. The second
stage is known as the external problem of the aerial theory.

Using the second Maxwell’s equation in the complex form

HiErot a


 ,

after substitution

         ArotH
a





1


(1.1)
we obtain

0




  AiErot 

 ,

where H,E  are electric and magnetic field strengths, respectively; а

is  the  magnetic  permittivity;    is  the  pulsatance;  A


is  the  vector
potential of  the electromagnetic field. 

Taking into account that the vector AiE 
 creates the potential

field, some scalar function (potential) with the gradient exists
UgradAiE 

 

or
     UgradAiE 

  .                        (1.2)

Substituting  H,E   from (1.1),  (1.2),  respectively,  in  the  first
Maxwell equation and using the Lorenz gauge transformation

0 UiAdiv aa



 ,

we obtain the non-homogeneous wave equation for the vector potential

    exa jAA





  22 ,                           (1.3)

where    is  the  differential  Hamilton’s  operator;  aa     is

the propagation factor; exj


 is the density of external conduction current.
It is known from electrodynamics that solution of (1.3) is
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(1.4)       
where  r  is  the  distance  between  the  volume  element  dV  and
the reference point, in which the vector potential value is determined; V
is the volume of the external current density.

Finally, for the electric intensity

    Arotrot
i

Hrot
i

E
aaa













11
 .

(1.5)
The  obtained  field  distribution  should  satisfy  the  radiation

condition  and boundary  conditions.   Distribution  of  currents,  charges,
tangential components of electromagnetic field for many antennas can be
set on the basis of certain physical reasons.

 
1.2. Regulations of geometrical optics

When  studying  local  -  flat  electromagnetic  waves,  methods  of
geometrical optics are often used, that simplifies a technique of research.
The front of the local - flat waves in the considered limited area of space
is close to the flat one.

The  basis  for  the  geometrical  optics  is  four  laws,  established
empirically: the law of the rectilinear propagation of radio waves; the law
of  independence  of  beam tubes,  the  law of  reflection  and the  law of
refraction.  In  geometrical  optics  the  propagation  of  electromagnetic
waves  is  investigated  without  taking  into  account  the  nature  of  wave
processes by means of geometrical relations.

The  trajectory,  along  which  the  electromagnetic  energy  is
transferred, is known as the ray. From the point of view of geometrical
optics  it  is  supposed,  that  inside  the  beam  tube  in  its  any  section
the quantity of energy is constant. Hence it follows, that the exchange of
energy between beam tubes does not occur.

Fermat’s  principle  is  considered  to  be  fundamental  for
the geometrical optics.  According to it, the optical length of the way in
the given medium is less than the length of any other line, connecting two
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chosen points. The optical length of the way is meant as integral 
l

ndl ,

where l  is the ray trajectory; 00 aan   is the refraction factor.
Then, Fermat’s principle

           minndl
l

 .                                     (1.6)

 Hence  it  follows,  that  in  homogeneous  medium  ( constn  )
the ray trajectory is the straight line.

 Laws  of  reflection  and  refraction  in  geometrical  optics  are
received at fall of the flat electromagnetic wave on the flat boundary of
two mediums.  These laws are also correct  for cases when radiuses of
curvature of the medium's boundary and the wave front are longer than
the wavelength. Thus, the incidence of the locally flat electromagnetic
wave on the locally flat boundary is examined.

Laws of geometrical optics can be used when relative changes of
dielectric and magnetic permittivity of medium, amplitudes of  electric
and  magnetic  field  intensity  on  the  distance  of  wavelength  in
the considered medium is less than 
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where   is the wavelength of considered medium.

1.3. The equivalence principle

The field equivalence principle  is  the  replacement  of  the  actual
sources  of  an  electromagnetic  field  by  a  set  of  more  convenient
equivalent surface currents or charges.

Let S  be a closed surface, which divides space into regions 1V

and 2V  (Fig. 1.1). All field sources are situated in S . If the character

and arrangement  of  these  sources  are  unknown,  but  vectors  SE


 and

SH


 on  surface  S  are  known,  the  field  in  region  2V ,  free  from
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sources,  may  be  found  from  values

SE
  and  

SH
 . Thus, it is possible to

proceed from            the intensity of
the field on surface  S  to equivalent
currents and charges.

The linear density of equivalent
electric  e

Sj


 and  magnetic  m
Sj



currents  is  determined  from
expressions

                                          ;H,nj S
e
S


0                                (1.7)

                                          ,E,nj S
m
S


0                              (1.8)

where 0n


 is the unit vector normal to S . 

The surface density of equivalent electric e
S  and magnetic m

S

charges

                                          ;n,ESa
e
S 0


                              (1.9)

                                          0n,H Sa
m
S


   .                        (1.10)

It  is  apparent  from  expressions  (1.9),  (1.10)  that  if  tangential
components of field are equal to zero, equivalent charges on surface S
are absent.

1.4. The duality principle

The  duality  principle  follows  from the  symmetry  of  Maxwell’s
equations  describing  electric  and  magnetic  fields.  It  essence  is  that
the  solution  of  Maxwell’s  equations  for  the  electric  field  at  given
boundary conditions will  be valid as well  as for the magnetic field at
the same boundary conditions, accepted for the magnetic field.

Thus, expressions describing the radiation field for the aerial with
the magnetic current mI  can be obtained from formulas for the radiation
field of the aerial with electric current I  by the method of substitution

                 ;;II;HE aa
m  



                 .WW;II;EH m 1


            (1.11)
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In this case vectors E


 and H


 should meet the suitable boundary
conditions on identical interfaces. 

 
1.5. Far-field radiation zone of an aerial

The antenna radiation field is divided into far, transition and near
zones.  Of  particular  interest  is  the  field  of  the  aerial  at  considerable
distances,  in  the  so-called  far-field  or  the  Fraunhofer  zone,  in  which
the  field  structure  is  stable  and the  amplitude  of  the  field  strength  is
proportional to the first order of distance. 

Let us determine the radius of a far zone for aerials with the sizes
larger  than  the  wavelength  (not  point  radiator).  Let  the  aerial  with
the maximal linear size L  occupy volume V , in which the distribution
of  currents  is  given  (Fig.  1.2).  The  origin  of  rectangular  coordinate

system we will be so, that the maximal distance up to border of the aerial
does not exceed 2L . Let us designate the point of observation removed
enough  from the  aerial  through  M.  We  shall  isolate  two elements  of
current in volume V : one – in the origin of coordinate system, another –
in an arbitrary point A .
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Radiation fields of the sources located in these points, according to
(1.4), will be characterized by functions of a spherical wave

   
A

ikr

A

ikr

r

e
r

r

e
r

A

  ; ,

where  Arr,  are  distances  from  points  0  and  A  to  point  M ,
respectively.

From Fig. 1.2  

drrA


 ,

or

                               cos222 drdrrA  .                   (1.12)

As, for any value of vector  d , the condition d  r  is satisfied,
the expansion of expression (1.12) in a series on orders of the ratio is
possible:

  





























 ...cossin

2

1
sin

2

1
cos1 2

3
2

2


r

d

r

d

r

d
rrA . (1.13)

When distance r  is of one order with size L , while determining
the  field  intensity,  it  is  necessary  to  use  the  exact  value  Ar  (1.12).
The  maximum distance,  for  which the  application of  the  approximate
formula (1.13) with the limited number of members results in significant
errors in comparison with the exact formula (1.12), determines the radius
of a near zone.

In  an  intermediate  zone  distance  r  surpasses  size  L so,  that
during decomposition of (1.13) on determining amplitudes of fields of
elementary radiators (in this case in points 0 and A ) one may neglect all
members but the first one and consider that in functions of a spherical
wave 

                                               
rrA

11
 .                                 (1.14)

In the phase factor ( Aikre ) such replacement is inadmissible, as it
would  result  in  significant  phase  errors,  therefore,  calculating  phase
angles the first three members of decomposition in equation (1.13) are
taken:
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







  2

2

2

sin
2

cos1
r

d

r

d
rrA .

The minimal radius of an intermediate zone may be found from
the inequality

 
π2

8

5.0
2

min

3


r

kL
,

and maximal - from 

          
π2

4

5.0

max

2


r

kL
,

where it is taken into account, that Ld 5.0max  .
The intermediate zone is referred to as the Fresnel’s zone.
In a far  zone,  which radius is  even,  when calculating the phase

ratio, one can guess, that
                                       cosdrrA  .                      (1.15)
In this case the phase error will be determined by the third member

of series (1.13). The allowable error is the phase shift, which does not
exceed  8 . The  maximal  phase  shift  is  observed  at  2Ld  ,
therefore,

                                       
8

π
sin

8
2

2


r

L
k                         (1.16)

We shall obtain the minimal radius of the far zone from equation
(1.16):

                                        


2

min 2
L

r  .                            (1.17)

When studying  the  field  in  the  far  zone,  which  minimal  radius
satisfies condition (1.17), it is possible to assume, that rays which leave
all points of the aerial and converge in a reference point, are parallel to
each  other,  and  the  propagation  difference  of  rays,  which  determines
the phase ratio, can be found from formula (1.15). Calculating amplitudes
of  the  field  strength,  which  are  radiated  by  aerial  elements,  one  may
assume  that  distances  from  elements  of  the  aerial  to  a  point  of
observation are equal to each other.

1.6. Intensity of radiation field of the aerial
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Intensity of a radiation field of any aerial can be written as 

                      krieFEeE   ,
max ,,                    (1.18)

or             

                      kriefEeE   ,
n max ,,  .               (1.19)  

In (1.18), (1.19) unit vector ),( e


defines the position of vector

E


in space (polarization of wave);  ,maxE í maxE  is the amplitude of

the field strength; ),(),,(  fF  are functions of the field intensity,
which depend on angles of the spherical coordinate system, at equality of

),( F  maximum to unit and when maximum of ),( f  may be of

any  value;    krie  ,  is  the  phase  factor,  which  is  determined  by

dependence  of  phase  on  angles  ),(   and  phase  incursion  kr ,
where 2k .

Similar expression can also be written for the magnetic component
of the field. Thus, it is necessary to remember, that vectors E


 and H



of  the  radiation  field  are  mutually  perpendicular,  perpendicular  to
a  propagation direction and change  in  phase  in  the  lost-free  medium.
Their ratio is equal to the wave resistance of the medium

W
H

E





.

1.7. Radiating power of aerial

The  power  of  electromagnetic  waves,  radiated  by  the  aerial,  is

usually known as the radiating power and designated through  P .

To determine the radiating power, let us arrange the aerial in the center of
sphere  S  of  the  sufficient  radius  r ,  chosen  so  that  all  points  of
the sphere surface are in a far  zone. Let  us find Poynting’s vector on
the surface of sphere S .

Complex Poynting’s vector in each point of such sphere is 

                            *
0

*
0 2

1

2

1
EE

W
rHErП 

 ,              (1.20)

where  0r


 is  the  ort  of  spherical  coordinate  system;  **, E H   are
the conjugate values of the complex field intensity.
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Using the period average value of Poynting’s vector 

                                           ППav


Re .

(1.21)  
We may calculate the radiation power by the formula       

                                            SdПP av


,                       

(1.22)
where Sd


 is the product of the surface element dS  on the unit vector

0r


 normal to the surface.
The  considered  method  is  known  as  the  method  of  Poynting’s

vector.
Let  on  the  surface  of  sphere  S  with  radius  r  the  complex

amplitude of the electric field intensity be equal to   ,E . Then, as it
follows from expression (1.18), the module of the field intensity in any
point is

                                         ,, maxFEE   .                    (1.23)
The mean value of Poynting’s vector according to formulas (1.21),

(1.22) is

                                       
 
W

E
rПav 2

,2

0


 .                         (1.24)

In the spherical coordinate system (Fig.1.3) the area of the surface
element may be found as the product of the rectangle sides:

                                        ddrdS sin2 .                        (1.25)
The direction of vector Sd


coincides with the direction of radius -

vector r


.
Substituting  expressions  (1.24)  and (1.25)  in  formula  (1.22)  we

shall obtain:

                        
 

 
 

 












0

2

0

2
2

sin
2

,
ddr

W

E
P .  (1.26)
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Taking into account expression (1.25) we shall obtain:

                    
 

 










0

2

0

2
22

max sin,
2

ddF
W

rE
P .   (1.27)

Formula (1.27) allows to calculate the radiation power at known
field distribution in a far zone. Value of the radiation power enables us to
determine some important parameters of the aerial.
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